Innovative Optical Methods for Characterization of Chemical Dynamics

Todd Martin, P.E., Principal, *Integral Consulting Inc.*

Understanding Contaminant Dynamics with OPTICS

CHALLENGE

The dynamic nature of rivers and estuaries presents a challenge to understanding the processes that drive contaminant transport and lead to human and ecological exposure.

SOLUTION

OPTically based In-situ Characterization System (OPTICS) supports characterization of contaminant concentrations in the context of biophysical processes at **unprecedented temporal resolution** to enable an understanding of contaminant dynamics that cannot be achieved through conventional monitoring approaches.

What Is **OPTICS**?

OPTICS uses a suite of *in* situ, autonomous sensors to provide high temporal resolution observations as input to a regression model calibrated and validated to discrete water samples.

Result: A predictive model to estimate contaminant concentrations at high temporal resolution over an extended period

Optical Data

Example of OPTICS regression model calibration

Case Study: Berry's Creek Study Area

OVERVIEW

- 1,029 acres of waterways and marshes
- Mercury, PCBs, and other contaminants present

Case Study: South River, Virginia

OVERVIEW

- Mercury from rayon production impacted the river in Virginia
- Natural recovery and monitoring recommended in 1980s, but fish tissue mercury is not declining as predicted

Total mercury flux under baseflow conditions and storm flow conditions

APPROACH

• **OPTICS** instrumentation deployed

contaminant concentrations

at multiple locations to quantify

APPROACH

• **OPTICS** monitoring performed to characterize mercury and methylmercury transport under base flow and freshet conditions

FINDINGS

• Particulate resuspension at peak tidal velocities and deposition at slack tide Significant resuspension during storm events

• Net mass flux of particulates and particulate-bound contaminants from waterways to the marshes, where they are accumulated

• Key line of evidence supporting an adaptive management remedy

Calculated mass flux into (green) and out of (brown) a Berry's Creek Study Area marsh showing net transport into the marsh

FINDINGS

• Storm flow conditions: Increase in particulate phase concentrations, consistent with sediment resuspension and bank erosion processes

Base flow conditions: Particulate resuspension due to diel cycling, consistent with nocturnal bioturbation processes

 Mercury and methylmercury mass mobilized annually by diel cycling is nearly equivalent to that mobilized by the freshet

Todd Martin, P.E.

Integral Consulting Inc. 385.955.5176 tmartin@integral-corp.com

consulting inc.